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ABSTRACT: Theoretical study of a three-dimensional laminar bound- 
ary layer is a complex problern, hut it can be substantially simplified 
in certain particular cases and even reduced to the solution of ordinary 
differential equations. 

One such particular case is the flow of a compressible gas on a stream- 
line in conical external flow. The ease is of considerable practical 
importance because the local heat fluxes may take extremal values on 
such lines, 

Such flow, except for the conical case, has been examined [1-4] ,  
and an approximate method has been given [1] on the basis of integral 
relationships and a special form for the approximating functions. A 
numerical solution has been given [2, 3] for such flow around an in- 
finite cylinder. It was assumed in [1 -3 ]  that the Prandtl number and 
the specific heats were constant, and that the dynamic viscosity was 
proportional to temperature. Heat transfer has been examined [4] 
near a cylinder exposed to a flow of dissociated air. 

Here we give results from numerical solution of a system of ordinary 
differential equations for the flow of a compressible gas in a laminar 
boundary layer on streamlines in conical external flow, wifn or with- 
out influx or withdrawal of a homogeneous gas. It is assumed that the 
gas is perfect and ~hat the dynamic viscosity has a power-law tem- 
perature dependence. 

51. Stmminskii [5] has derived the system of differential equations 
for a compressible gas in a three-dimensional laminar boundary layer, 
while Avduevskii [1] has given the system for the particuIar case of a 
boundary layer on a streamline in conical external flow. 

The Lam~ coefficients take the following form for a conical body 
in an (r, O, z) coordinate system (in which r is distance along the sur- 
face of the body from the center of conieity, 0 is the polar angle 
(triangular wing) or angle between the meridional planes (acute cir- 
cular or elliptic cone), and z is perpendicular to the surface of the 

body: 

h i ~  i, h ~ ( 0 )  r, h a ~  t ,  (1.1) 

in which ~(0) is a function whose form is determined by the geometry 

of the body. 
We convert to Crocco variables and introduce dimensionless quan- 

tities as follows: 

~ = p~%~ (! § ~.~)~ (u0, v = v a~, u = %u 1 , 

H = He l I i ,  P ~ Pep1, / ~ ~ bte~i, 2qr -~- PeUe r / ~Xe , 

ue2 t 0~e 0~0' 
~e, = 2 H  e , c ~ i -  ue~a ~ - -  

wu~Pw [ R r o.5 
~ 2 ~  Ue0e \l. .pC~l ] 

(i.2) 

and determine the functions Z(ui) , v~(ui), Hl(u l) on a streamline 
for conicai external flow with transpiration of a homogeneous gas at 

the temperature of the body: 

t.5ul § :qh P~lx~ 
Z" -{~ l ? c q  Z ~ 0 ,  

{(//1 @ al?)l) 2;1 I "~ pl~I] 
~)i" f ~  P~ Z---V-- ~ = t ) ,  

[I~" ~ ( I - - P )  I I ~ ' Z ' / Z = 2 a o ( I - - P ) ( t  + u l Z ' / Z ) ,  (1.3) 

the boundary conditions being 

Z' (0) = c~e, vi (0) = 0, Hi (0) =- Hlw ~ eonst. 

Z ( t ) = 0 ,  v ~ ( l ) = g ~ ( l ) =  t. (1.4) 

In (1.2)-(1.4), p is gas density, H is total enthalpy, g is dynamic 
viscosity, u and v are the components of the velocity vector in the 
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longitudinal and transverse directions, T l and % are the components 
of the frictional stress in those directions, P is the Prandtl mkmber, R 
is the Reynolds number (as calculated from the flow parameters at the 
external edge of the boundary layer and the coordinate r), w w is the 
speed of transpiration, subscript e characterizes the flow at the ex- 
terrlal edge of the boundary layer, the subscript w relates to the wall 
(surface of the body), and the subscript 1 denotes a dimensionless 
quants referred to the value at the external edge. 

If the solution to (i.3) is known, the local heat flux and stress 

components are 

Tiw ~ 0.5 OeUe2Cyl ~ peUe 2 (~ -~- ~Zl) ~ t~r-~ (0), 

~ w  "~-0.5  PeUeVeCf2-~-0.5 PeUeVe c / lv i"  (0),  

qw ~-" peUeIIe (t -~- al) ~ R r  -~ Z (0) H i '  (0) p - i  (1o5) 

System (1.3) with (1.4) has been integrated numerically by the 
Runge-Kutta method by means of second-order formulas, with a con- 
stant integration step ~u t = 0.0i. The solution was derived by succes- 
sive approximation, the boundary condiffons at u I = 1 being obeyed 
to ~ = 10 -~. The iteration was monitored via Z(0), v;(0), and Hi(0 ), 
the results being printed out when the difference between two succes- 
sive approximations became less than s = 10 -~. 

The calculations were performed for the following ranges in the 

characteristic parameters: 0 -< % -< 0.96 (0 -< M e ~ 11), 0 -< a 1 -~ '% 
- 1  --< a z -< +1, and 0.05 ~ Hlw -< l ,  with % --- 106 being taken in- 
stead of % which allowed the case to be calculated without altering 

the program. 
It was assumed that the gas was perfect, that the Prandtl number 

was constant at 0.7, and that ~ = 1.4, with g c~ T ~ 
w First we consider the case c~ z = 0 (no transpiration). 
We reduce Z(ui) to normal form by means of division by the value 

at the surface. Then Z(ui)/Z(0), vi(ui), and Hl(ui) take values at the 
external and internal edges of the laminar boundary layer that are not 
dependent on the characteristic parameters. 

It was found that % had relatively little effect on Z(ul)/Z(0) and 

Hl(ui) , while the deformation of these profiIes in response to a o and 
Hlw was similar to that for planar and axially symmetric boundary 

layers at zero pressure gradient. 
Figure 1 shows the profile of the secondary flow for various a 0 with 

a I = 0 and Hiw = 0.06. For % small (M for the flow sinai1), the pro- 
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f i l e  is  monotonic ,  bur changes occur  as a o increases ,  and the speed of 

the secondary flow wi th in  the boundary layer  exceeds  tha t  a t  the ex-  
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te rna l  edge  for a o -> 0.7. Increasing Illw tends to a c c e n t u a t e  the  

secondary f low, and this e f fec t  increases  wi th  %.  These effects  are  
phys ica l ly  expec ted ,  s ince  the secondary flow in  the boundary l aye r  

is due to unba l ance  be tween  the pressure and the  cen t r i fuga l  forces in 

the ex te rna l  flow, and this unba lance  increases  with the  speed of the 

ex te rna l  flow. Figure 2 shows the effects  of a I on the prof i le  of the 

secondary flow for Hiw = 0.05 and a0  of 0 and 0.92 (the solid l ines  

correspond to a l  = 0, wh i l e  the  dashed l ines  correspond to a 1 = ~). 
Paramete r  a i  scarce ly  inf luences  the prof i le  of the secondary 

f low for a 0 sma l l ,  but  the effects  s t ead i ly  increase  wi th  % .  The 

secondary flow for a g iven  a 0 is most  p rominen t  for a I = 0. The  

reason for this response to a I is as follows. If a I = 0, the spat ia l  

nature  of the  flow makes  i t se l f  f e l t  fu l ly  in  the boundary layer ,  and 

the secondary flow is m a x i m i z e d  for the g iven  a 0. The flow in the 

boundary l aye r  is degenera te  for ct I = % and so the secondary flow 

is less than  for a I = 0. 
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This p ic ture  of the  flow prof i le  agrees wel l  with with results from 

n u m e r i c a l  in tegra t ion  for an in f in i t e  yawed cy l inder  [2,  8]. 

We need to know Z(0), H~w, and v i (0 )  as functions of %,  c~i, 
and Hiw in order to c a l c u l a t e  the f r i c t iona l  res is tance and hea t - t r ans -  

fer coeff ic ients .  

Figure a shows Z(0) as a funct ion of a0 for g iven  c~ l and for Hiw = 

= 0.05 (the solid l ines  are for a i as follows: 4) 0, 5) 1, 6) ~ ) .  The 

Z(0) for a 0 = 0 decreases  as ct 1 increases  in the  presence  of strong 

hea t  transfer, whi le  Z(0) and ct i increase  together  for ct 0 = 0.96. 

This behavior  of 7.(0) arises because  ct I = 0 corresponds to an 

acu te  c i rcu la r  cone  at  zero angle  of a t t ack ,  whi le  a I = ~o corresponds 

to an in f in i t e  cyl inder .  Increase  in a 0 in  the first case  ( increase  in  

the l oca l  M) causes reduct ion in the f r ic t iona l  res is tance coef f ic ien t ,  

and so an inc rease  in  a 0 causes  a decrease  in 7-.(0) for o~ l = 0. The 

va lue  of Z(0) near the  planar  c r i t i c a l  point  (c% = 0) in the presence  

of strong hea t  transfer is close to the va lue  for a p lanar  p l a t e  and is 

less than tha t  for a cone,  where the flow is spat ial .  Then increase  in  

ct I for a 0 ~ 0 causes a reduct ion in Z(0), whi le  increase  in a0 for a I > 

> 0 accentuate~ the secondary flow, which increases  Z(0) at  first.  

This increase  ceases  a t  a ce r t a in  a0, and for a o la rge  enough Z(0)begins  
to increase  with a I. As the hea t  transfer is reduced (Hiw increased) ,  
the point  of change  in  the dependence  moves  to the lef t ,  and Z(0) 

a lways  increases  with a I above a ce r t a in  Hlw. 
It is found tha t  Hiw is only very s l ight ly  dependent  on a I ( the 

dev i a t i on  from the  m e a n  does not exceed  !0.5~ whi le  the depen-  

dence  on a o is very near ly  l inear .  
Figure 4 shows that ,  for c~ smal l ,  a I has very l i t t l e  ef fect  on 

v~(0), the ef fect  becoming  apprec iab le  only for a0 > 0.6. The be-  

hav io r  for a 0 > 0 .4  has been described above in re la t ion  to the  ve- 

loc i ty  profi le.  The dev ia t ion  from the above re l a t ion  for smal l  a 0 
arises because  v~(ui) > 0 near the ex te rna l  edge  of the boundary 
layer ,  whereas this  de r iva t ive  is a lways nega t ive  for a0 > 0.4. This 

dev ia t ion  arises from the effect  of the Prandtl number  P; the vl(0 ) 

for c~o = 0 co inc ide  for P = 1 and are not dependent  on cti, whi le  

v[(0) a lways decreases as a I increases  for P > 1. 
We c a l c u l a t e d  q and the components  of r .  Figure 3 shows o 4 =- 

= qw(Pe Ue He) - i  R~'6( 1+ a l )  -~ as a funct ion of % for g iven  c~i 
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with  Hiw = 0.05 (the dashed l ines  are for ct i as follows: 1) 0, 2) 1, 
3) ~). The behavior  can  be exp la ined  by reference  to the l i m i t i n g  

cases ( a i  equa l  to 0 and ~o). 
w 3. Transpira t ion in e i the r  sense has  s im i l a r  effects  on the bound- 

ary layer ,  as Fig. 5 shows by reference to the  secondary-f low profi le  as 

a funct ion of c~ z for Hiw = 0.05, % = 0.94, and a I = 0. 
The effects on q and r are s imilar ;  Fig. 6 shows c h as a function 

of a0 for f ixed values  of a I and ct z with Hlw = Q.05 ( the solid l ine  
corresponds to a I = 0, the dashed l ine  to ct, = 1, and the dot-dash 

l ine  to a i = ~). This shows that  t ranspirat ion has effects  analogous to 

those of a pressure gradient .  These effects  arise because  the transpira-  

t ion al ters  the thickness of the boundary layer  and hence  the ve loc i ty  

and t empera tu re  gradients ,  which affect  r and q. 

Inward gas flow grea t ly  reduces the l oca l  convec t ive  h e a t  t rans-  
fer, and so this provides an e f f i c ien t  method of protect ion for a imraf t .  

The discussion of this topic  fa l ls  into two parts. In the first s tage,  
there  is absorption of hea t  by the inward- f lowing  gas (rise from T o 

to Tw); in the second, the gas enters the boundary l aye r  and reduces 

the  l oca l  convec t ive  transfer. 

These two processes may be considered via the equi l ib r ium surface 

t empera ture  of an acu te  c i m u l a r  cone  of length  I = 1 m (a long  the 
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surface) and semive r t ex  angle  ~ = 30 ~ mov ing  supersonical ly  ( M ~  = 

= 11) at  a he ight  H = 25 km at zero angle  of a t tack.  We assume that  

the surface of the body is a perfect  the rmal  conductor ,  the emiss iv i ty  
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coe f f i c i en t  be ing e = 0.8 and the i n i t i a l  gas t empera ture  being T O = 

= 300* K. In the  absence  of inward t ranspira t ion,  the surface t e m -  

pera ture  is governed by equa l i ty  of the heat  fluxes and is Twp = 
= 2214" K. I f  we n e g l e c t  hea t  absorpt ion due to the  h e a t  c a p a c i t y  

of the gas and take  % = 0.g,  outward transpirat ion of gas at the sur- 

face t empera tu re  reduces the l a t t e r  to 1882 ~ K. If we incorpora te  

hea t ing  of the gas front T o = 300 ~ K to Tw, we get  Twp = 160~ ~ K. 
This requires a gas flow rate of only 0.68 kg / sec .  This shows that  
t ranspira t ion provides e f f i c ien t  protect ion.  However,  a de t a i l ed  study 

of this topic  fal ls  outside the scope of this paper.  

These results apply only for a pa r t i cu la r  case,  but they do provide  

some qua l i t a t i ve  genera l  conclusions as follows. 
At a constant  surface t empera tu re  and (Zl. < ~o the gas f lew ra te  

var ies  as PwWw = c~a Ue Pc(1 + al)~ ~ so mos t  of the coolan t  
enters the boundary l aye r  on some i n i t i a l  sect ion and takes  up much  

of the heat  flux, while  the t ranspirat ion behind this plays a r e l a t i v e l y  

minor  part .  In this case  the surface t empera tu re  is constant  throughout 
the t ranspirat ion region,  whi le  e l sewhere  i t  increases  somewhat ,  

though this rise is much  less than in the absence  of t ranspirat ion i n ' t he  

leading  sect ion.  

For a g iven  gas flow ra t e  and g iven  flow paramete r s  at  the ex-  

ternal  edge,  this a f te ref fec t  of t ranspira t ion wi l l  be m a x i m u m  for 

a ,  = O and zero for c~ l = ~ ,  s ince  in  the l a t t e r  case the gas flow rate  

is everywhere  the same,  and a l l  sect ions p lay  the same  par t  in the 

genera l  ba lance .  Physica l ly ,  this is exp la ined  by the increase  in  
r emova l  of gas from the surface by the secondary flow as a l increases.  
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Also, the af tereffect  extends  l a t e r a l l y  for cq > 0; if  c~ 1 = % the 
af tereffect  appears only in the d i rec t ion  of the secondary flow. 

w We have  seen that  c~ = O corresponds to an acute  c i r cu l a r  

cone  at zero angle  of a t t ack ,  whi le  c~ 1 = ~ corresponds to an in f in i t e ly  

long cyl inder .  These cases are of p rac t i ca l  interest  and wi l l  be ex- 

amined  in more de ta i l ,  with pa r t i cu la r  a t tent ion  to the heat  transfer. 

Figure 7 shows the  l oca l  hea t  flux at  the surface of a cone  as the 

deoendence, of Ch~ R ~ = qw R~r5 [ p ~ u  oHm(1 -- Hlw)] -~ on the angle  
8 for various M for rapid heat  transfer (HIw = 0.06, solid l ines) and 

modera te  hea t  transfer (H~w = 0o5, dashed lines).  The loca l  transfer 

increases  with &, and the flux is m a x i m u m  for the l i m i t i n g  4} at  

which the gas flow remains  con ica l .  

The fol lowing cor re la t ion  formula  appl ies  for the Iocal  flux for 

cones with & > l 0  ~ at  hypersonic speeds with Hlw s m a l h  

Ro.s 
qw oor 

Pc.a%a/!/oa 
= 0.642 (i - -  Hrw ) Moo sin ~' ] / ' 7 ~  ~ X 

x [L~t~ (~ '= . ___~ M~)J '  ~-o.~. (4.1) 

This formula is correct  to :~8%. The fol lowing t ab le  g ives  the 

re la t ive  heat  flux k = q w x / q w x = 0  near the c r i t i c a l  l ine  on an inf i -  

n i te  cy l inde r  for Hlw = 0.08 and various M and X. 

Z ~ 0 20 40 60 80 Moo 

k 1.0 0.919 0.705 0.0425 0 .0t66 3 
k t . 0  0.913 0.686 0.0401 0 .0t30 5 
k 1.0 0.908 0.672 0.038t  0 .01t5 t5 
k t .0 01908 0.67t  0.0379 0 .0t14 25 
(cos X)i "z5 t . 0  0.925 0.716 0.0420 0.0t12 - -  

These values  agree  qui te  wel i  with the results from k = (cos X) 1'2~, 
a formula  that  can  be used near  the c r i t i c a l  l i ne  of a yawed cyl inder .  
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(It  has been suggested [2]  tha t  k = cos X should be used for this pur- 

pose. ) It is  c l e a r  tha t  increase  in  X g rea t ly  reduces the loca l  hea t  flux, 

so the l oca l  hea t  flux at  the l ead ing  rounded edge of a t r iangular  wing 

may  be reduced by increas ing  X. However,  i t  has been shown [6] by 

expe r imen t  for M of 4 to 10 for the c r i t i c a l  l i n e  on a yawed cyl inder  
that  the l a m i n a r  boundary l aye r  becomes  turbulent  at  a Reynolds num-  

ber R* = PeUe0*/lae c a l c u l a t e d  from the flow parameters  at the ex-  

ternal  edge  and for a cha rac te r i s t i c  thickness 

8 
0* = _~ plv~ (t - -  vl) & .  

0 

TRts t ransi t ion begins at  R* = 130, and the flow is c o m p l e t e l y  

turbulent  for R* ~ 460, at  which point  the heat  flux has increased by 
a factor  of 4 - &  For this reason, increase  in X reduces the heat  flux 

only within ce r t a in  l imi t s  under g iven  condi t ions,  and X grea ter  than 
a ce r t a in  l i m i t  in fac t  increases  the hea t  flux on account  of turbulence  

in  the boundary layer .  
If we take  the c r i t i c a l  R* as 130, we can  de t e rmine  the l i m i t i n g  

X as a function of the f l ight  condi t ions.  Figure 8 shows R~D = 

= p ~  u D i t t o ,  in which D is the d i a m e t e r  of the cy l inder ,  as a 

function of the 1trotting X for various M with Hlw = 0.06 and a2 = O. 
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If  • is near  the l i m i t i n g  value,  inward t ranspi ra t ion  m a y  a c t u a l l y  
inc rease  the l o c a l  hea t  flux on account  of product ion of tu rbulence  in 
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the boundary layer. In that case, suctioning the gas may be advan- 
tageous, since it reduces t3" and retards the onset of turbulence, which 
allows the l imit ing X to be increased. 
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